Integrated hybrid silicon lasers

Iris Light Technologies aims to harness emerging materials for applications in silicon photonics for energy-efficient computing and data centers. Iris is developing technology that reduces optical interface footprint and provides a highly efficient manufacturing technology for hybrid silicon based lasers.

Watch Video

Critical need for this technology

The demand for computing power continues to accelerate, with tremendous growth in data centers and personal devices expected to exceed 20% for the next five years and likely beyond. This represents a threefold challenge of meeting market demand, at lower cost, and, perhaps most importantly, to simultaneously reduce energy consumption.

As we approach the end of the “first” Moore’s Law, the naïve solution to add more processors will push our global energy use to unsustainable levels. To combat these challenges, scientists are attempting a wide variety of approaches to create a new Moore’s Law.

This hybrid silicon laser technology fulfills specific targets laid out in the Department of Energy’s Advanced Manufacturing Offices’ multi-year program plan. In particular, the “Energy-Efficient Advanced Computing” goal that calls for: “Advance energy-efficient, cost-effective, and reproducible materials and manufacturing technologies to extend computational power beyond Moore’s Law”

Potential CO2 Reduction

Currently, data centers use about 1 percent of global electricity, accounting for approximately 150 MtCO2e of emissions each year. The demand for cloud computing and data services is growing rapidly, and the efficiency of data centers must continue to improve in order to prevent a rapid increase in energy usage and associated emissions. Iris Light Technologies solution will be a component of this improvement and could reduce emissions by several MtCO2e annually.


  • To date, the main large-scale approach to integrated lasers are heterogeneous structures in which a direct-gap III-V wafer is bonded, and then processed, on top of a passive silicon circuit.
  • There are presently no other 2D material-based lasers that work in silicon compatible with communications bands.

Potential markets

  • The end users of this technology will span known large-scale industrial companies such as Intel, HP, Cisco, and Infinera, to emerging CMOS opto-electronics foundries for ‘”fabless” rapid-prototypes for small companies with no in-house fabrication facilities, such as the startup Elenion (New York).
  • In other words, a properly developed hybrid silicon laser will be a standard, indispensable component in every CMOS opto-electronics foundry.

Value proposition: This is a technology with the potential to broadly impact all of integrated opto-electronics. Our hybrid silicon lasers are a foundational component of optical integrated circuits expected to foster 21st Century innovation akin to vast advances in computing brought about by the electronic revolution of the 20th Century. Specifically, our silicon laser is a strong candidate to be the light source in the opto-electronic integrated circuits driving, for example, data centers and super-computing facilities that increasingly rely on optics for improved performance.


Key innovation

Using a hybrid material system, we have developed a silicon laser by using the emerging two-dimensional nanomaterial phosphorene as the light emitter.


R&D status of product

In 2017, we conducted the first proof-of-concept experiments, showing stimulated emission (e.g., lasing) in the hybrid silicon-phosphorene system. A patent was issued in 2018. At CRI, we are currently translating the lab results to scalable industrial processes.


Team overview

Chad Husko

Ph.D. and M.S. in Applied Physics from Columbia University (New York) and B.S. in Physics and Mathematics from Loyola University Chicago. Former Alexei Abrikosov Fellow at Argonne National Laboratory, where he led the research program on hybrid silicon lasers before spinning out Iris Light Technologies.

Technology profile

Primary industry:Computing/Electronics
Estimated annual revenue:NA
Social challenge:Energy efficiency
R&D commercial collaborator:NA

Latest News

See All
  • Finalists Chosen for CRI’s Cohort 7

    Eighteen individuals comprising 16 startups advanced to the Finals pitch competition to join Chain Reaction Innovations’ Cohort 7. A broad range of energy innovations are represented in this year’s applicants, including energy storage and generation, decarbonization, circular economy, manufacturing, materials and vehicle technologies and materials. Read More

  • Semi-Finalists Chosen For CRI's Cohort 7

    Thirty individuals comprising 28 startup technologies were chosen to advance to the semi-finals and compete to join Chain Reaction Innovations’ (CRI) Cohort 7. A broad range of energy innovations are represented in this year’s applicants, including energy storage and generation, water, decarbonization, circular economy, quantum, … Read More

  • Entrepreneurship program at Argonne National Laboratory opens applications for startups

    Develop your clean energy or climate tech startup with the support of Argonne National Laboratory’s Chain Reaction Innovations program. Apply now, applications close at 5 p.m. CST, Nov. 30, 2022. Chain Reaction Innovations (CRI), the entrepreneurship program at The U.S. Department of Energy’s ( … Read More

  • 5 clean energy startups chosen for Argonne’s Chain Reaction Innovations

    Cutting-edge startups embed at Argonne to develop innovative technologies that can reduce greenhouse gas emissions and strengthen emerging U.S. energy technologies. Aerial view of Argonne. (Image by Argonne National Laboratory.) Seven new innovators will join Chain Reaction Innovations (CRI), the Lab-Embedded Entrepreneurship Program (LEEP) … Read More

  • UChicago Spinout Acquired by Quantum Ecosystem Leader ColdQuanta

    Originally published May 10, 2022, by UChicago’s Polsky Center for Entrepreneurship and Innovation A University of Chicago quantum software spinout and Duality Cohort 1 participant, has been acquired by the global quantum ecosystem leader, ColdQuanta. is embedded in Argonne National Laboratory’s Chain Reaction Innovations program and … Read More